

Multi-Scale Medical Robotics Center (MRC) Symposium 2024 9th-11th May 2024 · Hong Kong

Hands-on workshop on advanced surgical robotic systems

Endoluminal

Al Assisted Robotic Surgery

Magnetic Guided

e-Programme Book

 \bigcirc

Main Symposium - CUHK Medical Centre Hands-on Workshop -MRC R&D Lab, Hong Kong Science Park

Organizer:

Multi-Scale Medical Robotics Center (MRC)

Symposium 2024 9th-11th May 2024 · Hong Kong

Hands-on workshop on advanced surgical robotic systems

Table of Contents

Organizing Committee

Symposium Co-Chairs

Steering Committee

Prof. Philip Wai Yan CHIU Faculty of Medicine The Chinese University of Hong Kong

Prof. Samuel Kwok Wai AU Department of Mechanical and Automation Engineering The Chinese University of Hong Kong

Prof. Lord Ara DARZI Faculty of Medicine Imperial College London

Prof. Bradley NELSON The Institute of Robotics and Intelligent Systems ETH Zurich

Prof. Ferdinando RODRIGUEZ Y BAENA Department of Mechanical Engineering, Imperial College London

Prof. Russell H. TAYLOR Department of Computer Science Johns Hopkins University

Organizing Committee

Prof. Philip Wai Yan CHIU (The Chinese University of Hong Kong)
Prof. Samuel Kwok Wai AU (The Chinese University of Hong Kong)
Prof. Simon Siu Man NG (The Chinese University of Hong Kong)
Prof. Chi Fai NG (The Chinese University of Hong Kong)
Prof. Danny Tat Ming CHAN (The Chinese University of Hong Kong)
Prof. Hon Chi YIP (The Chinese University of Hong Kong)
Prof. Jeremy Yuen Chun TEOH (The Chinese University of Hong Kong)

Executive Sub-committee

Prof. Samuel Kwok Wai AU (The Chinese University of Hong Kong)
Prof. Zhang LI (The Chinese University of Hong Kong)
Prof. Ka Wai KWOK (The Chinese University of Hong Kong)
Prof. Dou QI (The Chinese University of Hong Kong)
Prof. Bernard Shing Shin CHENG (The Chinese University of Hong Kong)
Dr. Steffi Kar Kei YUEN (Prince of Wales Hospital)
Dr. David Kai Wing LEUNG (Prince of Wales Hospital)

Exhibition & Floor Plan

Symposium Venue:

Auditorium, 10/F, CUHK Medical Centre, 9 Chak Cheung Street, Shatin, New Territories, Hong Kong

Exhibitor Olympus Hong Kong and China Limited

Symposium Information

Symposium & Workshop Venue

- Symposium Venue: Auditorium, 10/F, CUHK Medical Centre, 9 Chak Cheung Street, Shatin, New Territories, Hong Kong
- Workshop Venue: MRC R&D Lab, G01-G03, G/F, Building 20E, Phase Three, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong

Opening Hours of Registration Desk

Function	Venue	Opening Hours
Main Symposium	Reception Area of Auditorium, 10/F, CUHK Medical Centre	10 th May 2024, 08:00-17:30
		11 th May 2024, 08:30-17:30
Workshop 1	Foyer Area of MRC R&D Lab, 20E, Hong Kong Science Park	9 th May 2024, 09:00-12:30
Workshop 2		9 th May 2024, 13:00-17:00
Workshop 3		10 th May 2024, 14:00-17:30
Workshop 4		11 th May 2024, 09:00-12:30

Official / Social Program

Function	Venue	Date & Time
Cocktail Reception (For Registered Guests only)	MRC R&D Lab, 20E, Hong Kong Science Park	9th May 2024, 17:00-20:00
Opening Ceremony	Auditorium, 10/F, CUHK Medical Centre	10 th May 2024, 09:00-09:30
Poster Presentation	Foyer Area, 10/F, CUHK Medical Centre	10 th May 2024, 10:30-17:30 11 th May 2024, 08:30-17:30
Dinner (For Invited Guests only)	ClubONE PARC88 (Shop S040A, G/F, Lakeside 2, Phase 2, Hong Kong Science Park)	10 th May 2024, 17:30-21:00
Closing Ceremony	Auditorium, 10/F, CUHK Medical Centre	11 th May 2024, 17:00-17:30

Coach Transfer

Coach transfer for attending Workshop MRC R&D Lab on 10-11 May	o at Click HERE
Coach transfer for attending Cocktail F on 9 May	Reception Click HERE

Language

English is the official language of the Symposium.

Certificate of Attendance

E-Certificate of attendance will be sent by email after the Symposium.

9th May 2024 (Thursday)

Time	Programme
AM Session	(MRC R&D Lab, HK Science Park)
09:00-09:30	Registration
09:30-12:30	Workshop 1: Endoscopic Robot for Gastrointestinal Tumor Dissection
	Performance Demonstration of EndoR Surgical System in Lower GI: In Live Porcine Model
	EndoR
	Prof. Philip Chiu
	Faculty of Medicine, The Chinese University of Hong Kong
	Prof. Hon Chi Yip
	Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong
	Dr. Ka Chun Lau
	Multi-Scale Medical Robotics Center
12:30-14:00	Lunch Break
PM Session	(MRC R&D Lab. HK Science Park)
14:00-17:00	Workshop 2: Robot-assisted Bimanual Procedures through Laparoscopic and Endoluminal
	Approaches
	(2 Parallel Sessions)
	1. Cornerstone Robotics - Forging Accessibility in Robotic Surgery
	Cornerstone Robotics
	Prof. Hon Chi Yip
	Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong
	Prof. Samuel Au
	Department of Mechanical and Automation Engineering, Faculty of Engineering, The Chinese University of Hong Kong
	The Chinese Oniversity of Hong Kong
	2. En-bloc Resection of Bladder Tumours (ERBT) in an Ex-vivo Model with a Novel Endoluminal
	Robotic System
	Agilis Robotics
	Prof. Jason Chan
	Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong
	Prof. Ka Wai Kwok
	Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong
17:00-20:00	Cocktail Reception

10th May 2024 (Friday) – AM Session

Time	Programme		
AM Session	(Auditorium, CUHKMC)		
Moderators: P	rof. Hon Chi Yip and Prof. Zhang Li		
08:30-09:00	Registration		
09:00-09:30	Opening Ceremony		
09:30-10:00	Keynote Presentation A		
	Cognitive Revolution in Surgery: AI, Robotic Surgery, Digital Surgery		
	Prof. Mehmet Mahir Özmen		
	Faculty of Medicine, Istanbul Bahçeşehir University		
	Faculty of Medicine, Sapienza University of Rome		
10:00-10:30	Keynote Presentation B		
	Adoption of Innovation in Medical Robotics		
	Prof. Lord Ara Darzi		
	Faculty of Medicine		
10.70 10.50			
10:30-10:50	Coffee Break		
10:50-11:10	Invited Presentation I Magnetic Surgical Pohete: A "Egytactic Voyage" Doop Incide the Human Party		
	Magnetic Surgical Robots: A Fantastic Voyage Deep Inside the Human Body		
	Prof Pietro Valdastri		
	Chair in Robotics & Autonomous Systems.		
	School of Electronic and Electrical Engineering,		
	University of Leeds		
11:10-11:30	Invited Presentation 2		
	Enabling Technology for Autonomous Robotic Retinal Surgery		
	Prof. Iulian I. Iordachita		
	Whiting School of Engineering,		
	Johns Hopkins University		
11:30-12:00	Panel Discussion		
	Prof. Samuel Au, Prof. Philip Chiu, Prof. Iulian I. Iordachita,		
	Prof. Mehmet Mahir Ozmen, Prof. Pietro Valdastri		
12:00-13:00	Review & Discussion for Hands-on Workshops 1 & 2		
	Chairpersons for Review Discussion: Prof. Charles Chang & Prof. Hon Chi Yip		
17.00.1/ 70	Panelists: Prot. Jason Chan, Prot. Samuel Au, Prot. Philip Chiu, Prot. Ka Wai Kwok, Dr. Ka Chun Lau		
13:00-14:30	Lunch Break		

Endoluminal Al Assisted Robotic Surgery

10th May 2024 (Friday) – PM Session

Time	Programme	Time	Programme
PM Session	(Auditorium, CUHKMC)	PM Session	(MRC R&D Lab, HK Science Park)
Moderators:	Prof. Qi Dou and Prof. Bernard Cheng		
14:30-15:10	Keynote Presentation C	14:00-14:30	Registration
	Remote Magnetic Navigation for Precision		
	Telesurgery	14:30-17:30	Workshop 3: Image-guided Flexible
			Robotic Catheterization Platforms
	Prof. Bradley Nelson		(3 Parallel Sessions)
	The Institute of Robotics and Intelligent		1. Robotic Assisted Ventricular
	Systems, ETH Zurich		
			Centre for Artificial Intelligence and
15:10-15:35	Invited Presentation 3		Robotics
	The Hamlyn Centre for Robotic Surgery:		
	Overview and MIM Lab Developments		Prof. Danny Chan
			The Chinese University of Hong Kong
	Prof. Ferdinando Rodriguez y Baena		The enimese eniversity of hong keng
	Imperial College London		Prof Hongbin Liu
15:35-16:00	Poster Session & Coffee Break		Centre for Al and Robotics.
			Hong Kong Institute of Science & Innovation,
			Chinese Academy of Sciences
16:00-16:25	Invited Presentation 4		2. Robotic Vascular Intervention with a
	The Future of Surgery:		Remote Electromagnetic System
	Al-assisted Interventions		
			Prof. Hongsoo Choi
	Prof. Sophia Bano		Department of Robotics and Mechatronics
	Department of Computer Science, University		Engineering, Daegu Gyeongbuk Institute of
	College London		Science & Technology (DGIST)
16:25-17:00	Poster Session		3. Robotic Bone-Drilling of Cadaver Trial
17:00-17:25	Invited Presentation 5		Procedures
	Robotic RIRS with Zamenix		
			Prof. Jason Chan
	Prof. Dong-Soo Kwon		The Chinese University of Hong Kong
	Department of Mechanical Engineering,		The chinese of weisity of hong kong
	Korea Advanced Institute of Science and		Prof. Samuel Au
	Iecnnology (KAIST)		Department of Mechanical and Automation
			Engineering, Faculty of Engineering,
			The Chinese University of Hong Kong

11th May 2024 (Saturday) - AM Session

Time	Programme	Time	Programme
AM Session	(Auditorium, CUHKMC)	AM Session	(MRC R&D Lab, HK Science Park)
Moderators:	Prof. Danny Chan and Prof. Tony Chan		
09:00-09:30	Registration	09:00-09:30	Registration
09:30-10:10	Keynote Presentation D	09:30-12:30	Workshop 4: Endoluminal Robotic
	Autonomy and Semi-Autonomous		Navigation and Endoscopy
	Behavior in Surgical Robot Systems		(3 Parallel Sessions)
			1 The BellowScope: a Low-cost
	Prof. Russell H. Taylor		Disposable Soft Endoscope for Upper
	Department of Computer Science,		Gastrointestinal Tract Screening
	Johns Hopkins University		Oustromtestindi nact screening
10:10-10:35	Invited Presentation 6		Prof. Pietro Valdastri
	Evaluation of a Novel Robotic Platform for		Chair in Robotics & Autonomous Systems,
	Transoral Surgery (TORS)		School of Electronic and Electrical
			Engineering, University of Leeds
	Dr. Jason Heming		2. A POV Magnetically Guided Endoscope
	Institute of Systems, Molecular and		for Telesurgery
	Integrative Biology, University of Everpoor		
10:35-11:00	Invited Presentation 7		Prot. Shannon Chan
10.55 11.00	Bringing Engineering to Patients:		The Chinese University of Heng Keng
	It is Possible		The Chinese Oniversity of Hong Kong
			Prof. Bradley Nelson
	Dr. Henry Ho		The Institute of Robotics and Intelligent
	Division Chairman & Senior Consultant,		Systems, ETH Zurich
	Division of Surgery & Surgical Oncology,		3. Micron-precision Robot for Assisting
	Singapore General Hospital		Ophthalmic Surgeons
11:00-11:30	Poster Session & Coffee Break		
11:30-11:55	Invited Presentation 8		Prof. Kelvin Chong
			Department of Ophthalmology and Visual
	Prof. Jim Khan		Sciences, The Chinese University of Hong
11.55 12.20			Köng
11:55-12:20	Invited Presentation 9		Prof. M. Ali Nasseri
	Surgical Education and Innovation, io		Department of Robotics and Embedded
	rears of Ircaa Taiwan Experience		Systems, Technical University of Munich
	Dr. Wayne Huang		
	Academy of Circular Economy,		
	National Chung Hsing University		
12:20-12:45	Invited Presentation 10		
	Our Experiences in Clinical		
	Implementation of the Newly Launched		
	Surgical Robots		
	Prof. Koichi Suda		
	Department of Surgery, Fujita Health		
10.45.14.00	University		
12:45-14:20	Lunch Break		

11th May 2024 (Saturday) - PM Session

Time	Programme				
PM Session	(Auditorium, CUHKMC)				
Moderators: P	Moderators: Prof. Shannon Chan and Prof. Charles Cheng				
14:20-14:45	Invited Presentation 11				
	Electromagnetic Controllable Micro/Nanorobots to Improve Cell Therapy				
	Prof. Hongsoo Choi				
	Department of Robotics and Mechatronics Engineering,				
	Daegu Gyeongbuk Institute of Science & Technology (DGIST)				
14:45-15:45	Review & Discussions for Hands-on Workshops 3				
	Chairpersons for Review Discussion: Dr. James Chandler and Prof. Ka Wai Kwok				
	Panelists: Prof. Danny Chan, Prof. Samuel Au, Prof. Hongsoo Choi, Prof. Hongbin Liu				
15:45-16:00	Poster Session & Coffee Break				
16:00- 17:00	Review & Discussions for Hands-on Workshops 4				
	Chairporcops for Poviow Discussion: Prof. Dappy Chap. and Prof. Ka Wai Kwok				
	Prodicts Def Charges Ofree Def (charge Def Malagement Al'Alere i Def Deall Alabert				
	Panelists: Prot. Shannon Chan, Prot. Kelvin Chong, Prot. Monammad Ali Nasseri, Prot. Bradiy Nelson,				
	Prof. Pietro Valdastri				
17:00-17:30	Closing Remarks & Award Presentation				

* The scientific programme and workshops are subject to change without prior notice.

Multi-Scale Medical Robotics Center (MRC) Symposium 2024 9th-11th May 2024 Hong Kong / Hands-on workshop on advanced surgical robotic systems

Faculty

Prof. Lord Ara DARZI (United Kingdom)

Keynote Speakers

Invited Speakers

Prof. Bradley NELSON (Switzerland)

Prof. Mehmet Mahir Özmen (Turkey)

Prof. Russell H. TAYLOR (United States)

Prof. Sophia Bano (United Kingdom)

Prof. Hongsoo Choi (South Korea)

Dr. Jason Fleming (United Kingdom)

Dr. Henry Ho (Singapore)

Prof. Wayne Huang (Chinese Taipei)

Prof. Iulian I. Iordachita (United States)

Prof. Jim Khan (United Kingdom)

Dr. Dong-Soo Kwon (South Korea)

Prof. Ferdinando Rodriguez y Baena (United Kingdom)

Prof. Koichi Suda (Japan)

Prof. Pietro Valdastri (United Kingdom)

Multi-Scale Medical Robotics Center (MRC) Symposium 2024 9^{n-11th May 2024 Hong Kong / Hands-on workshop on advanced surgical robotic systems}

Faculty

Prof. Samuel Au (Hong Kong SAR)

Workshop Facilitators

Prof. Danny Chan (Hong Kong SAR)

Prof. Jason Chan (Hong Kong SAR)

Prof. Shannon Chan (Hong Kong SAR)

Prof. Philip Chiu (Hong Kong SAR)

Prof. Kelvin Chong (Hong Kong SAR)

Prof. Ka Wai Kwok (Hong Kong SAR)

Dr. Ka Chun Lau (Hong Kong SAR)

Prof. Hongbin Liu (Hong Kong SAR)

Prof. M. Ali Nasseri (Germany)

Prof. Hon Chi Yip (Hong Kong SAR)

Hands-on Workshops

The University of Hong Kong

Workshop 1: Endoscopic Robot for Gastrointestinal Tumor Dissection

Hands-on Workshops

Workshop 3: Image-guided Flexible Robotic Catheterization

Platforms

(3 Parallel Sessions) 1. Robotic Assisted Ventricular Intervention Centre for Artificial Intelligence and Robotics Prof. Danny Chan Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong Prof. Hongbin Liu Centre for AI and Robotics, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences MicroNeuro 2. Robotic Vascular Intervention with a Remote **Electromagnetic System** Prof. Hongsoo Choi Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST) Comprehensive Vascular Models and Remote Magnetic Intervention System 3. Robotic Bone-Drilling of **Cadaver Trial Procedures** Prof. Jason Chan Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong

Prof. Samuel Au Department of Mechanical and Automation Engineering, Faculty of Engineering, The Chinese University of Hong Kong

(a) Overall Surgical Robotic System (b) Miniaturized Articulated Spin Tip with Various Exchangeable Tip Bits

12

Hands-on Workshops

Workshop 4: Endoluminal Robotic Navigation and Endoscopy

1. The BellowScope: a Low-cost Disposable Soft Endoscope for Upper Gastrointestinal Tract Screening

Prof. Pietro Valdastri Chair in Robotics & Autonomous Systems, School of Electronic and Electrical Engineering, University of Leeds

Prof. Shannon Chan Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong

Prof. Bradley Nelson The Institute of Robotics and Intelligent Systems, ETH Zurich

2. A POV Magnetically Guided Endoscope for Telesurgery

The Navion electroMagnetic Navigation System

Prof. Kelvin Chong Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong

Prof. M. Ali Nasseri Department of Robotics and Embedded Systems, Technical University of Munich

3. Micron-precision Robot for Assisting Ophthalmic Surgeons

Oculotronics Robotic System

Multi-Scale Medical Robotics Center (MRC) Symposium 2024 9*-11* May 2024 Hong Kong / Hands-on workshop on advanced surgical robotic systems

Speaker Abstracts

Keynote Presentation A 10th May 2024, 09:30-10:00

Prof. Mehmet Mahir Özmen Faculty of Medicine, Istanbul Bahçeşehir University Faculty of Medicine, Sapienza University of Rome

Cognitive Revolution in Surgery: AI, Robotic Surgery, Digital Surgery

The dramatic changes in surgery at the beginning of 20th century by introduction of anesthesia, asepsisantisepsis, move forward with the invention of endoscopy, laparoscopy and minimal invasive surgery and new surgical devices like staplers, which all created the modern surgery. However, aproximately 30% of patients still suffer complications which could not be overcome.

Recent progress in every areas of science related to artificial intelligence(AI) since beginning of the millenium has created the promises of revolution in cognition. Cognition is actually the action of knowing. Therefore, we can call these changes as cognitive revolution as there is a dramatic change in conditions of knowledge. Artificial intelligence has subfields like machine learning, natural language porcessing, artificial neural network-deep learning and computer vision. These distinct branches of AI play crucial roles in revolutionizing healthcare from predictive analytics and diagnostics to surgical precision and the interpretation of medical imaging. Their applications promise to significantly enhance patient care, diagnosis, and treatment, ultimately improving outcomes in healthcare settings. Robotic surgery in its current form is a form of AI surgery and a necessary step towards fully autonomous actions in surgery. Al has the potential to improve outcomes, doctor-patient relationships and job satisfaction for surgeons at all stages of surgical care. Surgeons should be aware of all those changes and be responsive to transformation.

Multi-Scale Medical Robotics Center (MRC) Symposium 2024 9^m-11^m May 2024 Hong Kong / Hands-on workshop on advanced surgical robotic systems

Speaker Abstracts

Keynote Presentation B 10th May 2024, 10:00–10:30

Prof. Lord Ara Darzi Faculty of Medicine

Imperial College London

Adoption of Innovation in Medical Robotics

Lord Darzi is a pioneer in the field of medical robotics. Since he performed the first robotic surgery in the United Kingdom in 2000, Lord Darzi has been at the forefront of surgical innovation. His leadership has been instrumental translating surgical robotics from that first surgery to become today's standard of care across a multitude of surgeries. As co-director of the Hamlyn Centre at Imperial College London, Lord Darzi has built a boundary breaking hub whose innovations continue to shape the field.

Lord Darzi's extensive technical expertise in the field of surgical robotics is eclipsed only by his talent for driving the adoption of these technologies into the healthcare environment. In the United Kingdom, Lord Darzi has been a champion for innovation within the National Health Service, while his academic achievements have cemented his place a thought leader in the field. He has mobilised diverse professionals from patients to surgeons, and policy makers to industry experts, all toward driving the uptake of medical robotics innovation.

In his presentation, Lord Darzi will share of his extensive experience in the U.K. and beyond. He will present on how he broke through siloes of traditional academics to build an ecosystem that inspired innovation through cross disciplinary research. His presentation describes the importance of having the user at the heart of developing innovation. Additionally, he will share his expertise in orchestrating all the necessary stakeholders, including from the to ensure the uptake of proven innovations.

Invited Presentation 1 10th May 2024, 10:50–11:10

Prof. Pietro Valdastri

Chair in Robotics & Autonomous Systems School of Electronic and Electrical Engineering University of Leeds

Magnetic Surgical Robots: A "Fantastic Voyage" Deep Inside the Human Body

Magnetic fields offer the possibility of manipulating objects from a distance and are ideal for medical applications, as they penetrate human tissue without inflicting any harm on the patient. Magnetic fields can be harnessed to actuate surgical robots, enhancing the capabilities of surgeons in reaching deep into the human anatomy through complex winding pathways, thus providing minimally invasive access to organs that are out of reach with current technologies. In this talk, we will explore various robotic architectures based on magnetic control, specifically designed for lifesaving clinical applications. These architectures include a magnetic flexible endoscope for painless colonoscopy, soft magnetic tentacles personalized for reaching peripheral areas of the lung and navigating the pancreatic duct, magnetic vine robots for endoluminal exploration, and magnetic "fusilli" robots designed for collaborative bimanual tasks in a confined workspace. We will also discuss enabling technologies, intelligent control, potential levels of computer assistance, the path to first-in-human trials, and highlight the future challenges associated with this ongoing Fantastic Voyage.

Multi-Scale Medical Robotics Center (MRC) Symposium 2024 9th -11th May 2024 Hong Kong / Hands-on workshop on advanced surgical robotic systems

Speaker Abstracts

Invited Presentation 2 10th May 2024, 11:10–11:30

Prof. Iulian I. Iordachita

Research Professor Whiting School of Engineering Johns Hopkins University

Enabling Technology for Autonomous Robotic Retinal Surgery

At present there is no longer a question of whether artificial intelligence (AI) will revolutionize the practice of modern surgery. There are now numerous substantial advancements in practice that utilize AI for diagnosis, imaging, tool navigation, surgical instrument utilization as well as for interfacing with robotics. Artificial intelligence, and more specifically machine learning, are integrated into surgical robotic platforms for environment perception and understanding, real-time decision-making, and to increase precision, safety, and efficiency of the performed surgical tasks. Moreover, advanced machine learning techniques and algorithms can increase the level of robotic autonomy for even more complicated tasks notably when considering interactions with complex and dynamic surgical environments. Al-based autonomous surgical robots are the surgeons of the future. Vitreoretinal surgery, a type of intraocular microsurgery, may be the most technically challenging eye surgery, and deals with the surgical treatment of retinal and posterior segment diseases. Retinal surgery is performed by an ophthalmic surgeon using miniaturized instruments and an operative stereomicroscope, for fine and highly precise tasks. These minimally invasive procedures require staggering accuracy, precision, steadiness, and other specialized skills and capabilities, that typical humans are able to achieve only through extensive training. Following the trend in microsurgery, robotic assistance, enhanced by artificial intelligence and combined with advanced imaging has the potential to fundamentally change and advance the field of intraocular surgery and enable higher levels of autonomy in retinal surgery.

Generally, surgical robotics are able to use artificial intelligence techniques for: (1) perception, (2) localization and mapping, (3) system modelling and control, and (4) human-robot interaction. Considering the overlap between intraoperative guidance and robot localization and mapping, the most relevant benefits of AI in autonomous intraocular robotic microsurgery are perception and system modelling and control. This talk will reveal the last developments concerning the AI-based technology for safe autonomous robotic assistance in retinal microsurgery. Multi-Scale Medical Robotics Center (MRC) Symposium 2024 9^a-11^a May 2024 Hong Kong / Hands-on workshop on advanced surgical robotic systems

Speaker Abstracts

Keynote Presentation C 10th May 2024, 14:30-15:10

Prof. Bradley Nelson The Institute of Robotics and Intelligent Systems ETH Zurich

Remote Magnetic Navigation for Precision Telesurgery

An inherent advantage of remote magnetic navigation (RMN) is that the approach effectively addresses the non-collocation problem for many medical robotics procedures that use flexible devices, such as catheters, guidewires, and endoscopes. Collocated control means that the sensors and actuators, essential components of any control system, are located near one another. For many endoluminal devices this is impossible with the traditional approach in which the distal end is observed using, for example, fluoroscopy but is controlled from the proximal end by a surgeon pushing, pulling, and twisting the device. The sensing and actuation can be located over a meter from each other with a long, flexible catheter serving as a transmission between the actuation and the endpoint where the task is being performed. This represents a classic non-collocation problem, and control theorists are well familiar with the challenges this presents. RMN addresses this by collocating the sensed distal end with torques that are applied directly to this end with magnetic fields.

While addressing the non-collocation problem with RMN makes it easier to control endoluminal devices for surgeons in the operating room, a less recognized but perhaps more important advantage is that it creates an opportunity for improving teleoperator control during telesurgery. By simply looking at the x-ray image of the in vivo device, or observing the visual image from an endoscope, the surgeon can directly control device motion without having to account for the difficult-to-model flexibility of the entire catheter, guidewire, or endoscope. This provides the surgeon with a more intuitive and effective control of the device so that the working end of the device can be guided to the location of interest, such as a blood flow blocking thrombi or an aneurysm to be treated with an endoluminal approach. Endoscopes can also be intuitively controlled using a point-of-view (POV) approach. I will discuss our recent work in using remote magnetic navigation to guide devices for performing remote mechanical thrombectomies to treat ischemic stroke and intracoronary thrombi as well as treatment of twin-to-twin transfusion syndrome.

Multi-Scale Medical Robotics Center (MRC) Symposium 2024 9th-11th May 2024 Hong Kong / Hands-on workshop on advanced surgical robotic systems

Speaker Abstracts

Invited Presentation 3 10th May 2024, 15:10–15:35

Prof. Ferdinando Rodriguez y Baena

Hamlyn Centre Engineering Co-director Imperial College London

The Hamlyn Centre for Robotic Surgery: Overview and MIM Lab Developments

The lecture will offer an overview of the field. It will start with the Hamlyn Centre's role in medical robotics, highlighting key structures and projects. The narrative will then move to the Mechatronics in Medicine Laboratory, discussing its contributions to surgical and diagnostic robotics. Past and present experiences in these areas are examined to showcase the development and application of these technologies. The lecture will also touch on current trends and future outlooks in medical robotics, emphasising the ongoing research and potential advancements at both the Hamlyn Centre and the Mechatronics in Medicine Laboratory.

Multi-Scale Medical Robotics Center (MRC) Symposium 2024 9th-11th May 2024 Hong Kong / Hands-on workshop on advanced surgical robotic systems

Speaker Abstracts

Invited Presentation 4 10th May 2024, 16:00–16:25

Prof. Sophia Bano

Assistant Professor in Robotics and Al Department of Computer Science University College London

The Future of Surgery: Al-assisted Interventions

Recent trends in Artificial Intelligence (AI) and Surgical Data Science have revolutionized the field of surgery, paving the way for a new era of AI-assisted robotic interventions. These cutting-edge technologies offer tremendous potential to enhance imaging, surgical navigation, and robotic interventions, ultimately reducing cognitive load on surgeons and optimizing procedural efficiency, hence leading to improved surgical outcomes. This talk will highlight our team's developments towards context awareness and machine consciousness in different surgical procedures and where we stand in terms of their clinical translation for moving towards a future of AI-assisted surgical intervention.

Multi-Scale Medical Robotics Center (MRC) Symposium 2024 99-11° May 2024 Hong Kong / Hands-on workshop on advanced surgical robotic systems

Speaker Abstracts

Invited Presentation 5 10th May 2024, 17:00–17:25

Prof. Dong-Soo Kwon

Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST)

Robotic RIRS with Zamenix

The successful clinical adaptation of the da Vinci system in laparoscopic surgeries demonstrated the benefits of robotic assistance such as precise and dexterous instrument motion and intuitive and ergonomic manipulation. The trend of surgery from open surgery to minimally invasive surgery (multi-port, single port, single site), and to non-invasive surgery is being accelerated by several innovative surgical robots. In particular, the non-invasive endoluminal surgery has been highlighted with flexible endoscopic surgery robots. We have been researching several technical issues of flexible endoscopic surgery robots to reach the surgical site via narrow and tortuous pathways and conduct the surgery.

This talk presents how "ZAMENIX" has been developed and commercialized; the endoluminal non-invasive surgery robot for kidney stone treatment. ZAMENIX is for ureter and renal stone removal that is capable of teleoperation of a flexible ureteroscope, a laser fiber, and a stone basket. The surgeon can select whether laser dusting or stone retrieval technique depending on the surgical condition or preference. The system can equip commercial flexible ureteroscopes. The system provides intuitive and comfortable remote manipulation of the ureteroscope and instruments by a single operator without wearing an X-ray protection lead gown. Moreover, the system provides assistive functions for enhanced surgical efficiency and safety. One is an automation capability that can record and replay the ureteroscope motion, making the repetitive task of stone retrieval easy and efficient. Another is the detection of oversized stone retrieval to prevent ureteral injury. The other is the respiratory motion compensation which allows precise positioning of the laser while the kidney of the patient is moving by breathing. A first-in-human trial for approval by the Korean Ministry of Food and Drug Safety has finished with a favorable stone-free rate and without any major complications. Further validation is being concentrated to ascertain how much this robotic assistance improves patient treatment outcomes.

For the commercialization of medical devices, we experienced many challenges such as approval of GMP, and ISO13485, and the product had to go through mechanical/electrical safety tests, electromagnetic compatibility, and biological safety assessments. All development and manufacturing information must be documented to be traceable. Another challenge is we had to acquire the funds to support the organization, R&D, clinical trials, production, and sales. The ultimate challenge was to acquire the reimbursement code from the NECA (National Evidence-based Healthcare Collaborating Agency, Korea)

Even though the business development of medical devices is very challenging, takes various specialties, and requires enormous financial support and time, the author believes it is worthwhile to try as a medical robot researcher.

Keynote Presentation D 11th May 2024, 09:30-10:10

Prof. Russell H. Taylor

John C. Malone Professor of Computer Science With Joint Appointments In Mechanical Engineering, Radiology, Surgery, And Otolaryngology Head-and-neck Surgery Department of Computer Science Johns Hopkins University

Autonomy and Semi-Autonomous Behavior in Surgical Robot Systems

This talk will discuss an emerging three-way partnership between physicians, technology, and information to improve treatment processes. Computer-integrated interventional medicine (CIIM) systems combine innovative algorithms, robotic devices, imaging systems, sensors, and human-machine interfaces to work cooperatively with surgeons in the planning and execution of surgery and other interventional procedures. Two crucial issues in managing this partnership are 1) how can the human physician specify what the robot is to do and 2) how can the computer controlling the robot ensure that the robot performs the specified task correctly and safely. This talk will discuss several common paradigms for approaching these questions and will illustrate the approaches with examples drawn from our past and current work.

Invited Presentation 6 11th May 2024, 10:10–10:35

Dr. Jason Fleming

Associate Professor Institute of Systems Molecular and Integrative Biology University of Liverpool

Evaluation of a Novel Robotic Platform for Transoral Surgery (TORS)

Traditional surgical approaches to the oropharynx mandated open surgery, with significant morbidity due to the extent of tissue damage required for access. The advent of minimally invasive techniques, most notably with transoral robotic surgery [TORS], has brought renewed interest in primary surgical treatment for cancers of the upper aerodigestive tract to optimise long term function. TORS is used to excise lesions of the head and neck through the mouth, benefitting from high-definition optics, hand tremor removal, and over 3600 range of motion to access tight anatomical spaces of the upper aerodigestive tract. It can also achieve excellent rates of oncologic control in patients, without the need for adjuvant treatment in early-stage disease, or as part of a de-escalation treatment strategy through late phase clinical trials. Index procedures in oropharyngeal surgery include diagnostic tongue base mucosectomy, and ablative tongue base resection, lateral oropharyngectomy and partial supraglottic laryngectomy.

CMR Surgical has developed a Robotically-Assisted Surgical Device to aid surgeons in performing minimal access surgery: the Versius® Surgical System. It has been designed to address some of the unmet needs currently faced by the surgical community, for example, dexterity and precision of movements, with fully wristed 5mm instruments and an ergonomic console. With an open console design, and ease of mobility between operating theatres, the device offers novel features to the market and has been used across specialties, amassing over 20,000 procedures globally to date. We will present our novel experiences of Versius® for use in TORS from our tertiary centre case series, that have resulted in the recent opening of a world first Phase II trial.

Multi-Scale Medical Robotics Center (MRC) Symposium 2024 9th-11th May 2024 Hong Kong / Hands-on workshop on advanced surgical robotic systems

Speaker Abstracts

Invited Presentation 7 11th May 2024, 10:35–11:00

Dr. Henry Ho

Division Chairman & Senior Consultant Division of Surgery & Surgical Oncology Singapore General Hospital

Bringing Engineering to Patients: It is Possible

Pending

Multi-Scale Medical Robotics Center (MRC) Symposium 2024 9th-11th May 2024 Hong Kong / Hands-on workshop on advanced surgical robotic systems

Speaker Abstracts

Invited Presentation 8 11th May 2024, 11:30–11:55

Prof. Jim Khan

University of Portsmouth

Pending

Pending

Invited Presentation 9 11th May 2024, 11:55–12:20

Dr. Wayne Huang

Director Academy of Circular Economy National Chung Hsing University

Surgical Education and Innovation, 16 Years of Ircad Taiwan Experience

As technology advances at an accelerated rate, the way surgery is performed is also undergoing revolution. Combining robotics, AI, IoT, ,AR, MR, into the operating room will become more common place, as the dream of automated surgery is pursued. IRCAD has been training surgeons worldwide since 1994, and has now become the largest network of training centers globally. As an aggregate of teachers, students, and medical device companies, IRCAD is becoming an ideal platform where not only new technology is developed, but also the marketing and education of surgeons is taking place. IRCAD-Taiwan has also partnered with local IT companies, venture funds, MedTech accelerators, in an effort to cultivate the ecosystem where MedTech startups can succeed.

Invited Presentation 10 11th May 2024, 12:20–12:45

Prof. Koichi Suda Professor & Head Department of Surgery Fujita Health University

Our Experiences in Clinical Implementation of the Newly Launched Surgical Robots

Background: We have demonstrated that active use of the surgical robot based on the appropriate surgical theory may help reduce morbidity and even improve prognosis following minimally invasive radical gastrectomy for gastric cancer.

Methods: Setups for newly launched surgical robots, including hinotori[™] Surgical Robot System (Medicaroid), Hugo[™] RAS System (Medtronic), and da Vinci SP Surgical System (Intuitive Surgical), were determined based on our original da Vinci's plane theory and monitor quadrisection theory. The operating surgeon conducted outermost-layer oriented lymph node dissection using the double-bipolar method, with the aid of LigaSure[™] Maryland Jaw Sealer (44cm, Medtronic) and DS Titanium Ligation-Clips (B BRAUN AESCULAP) given by the assistant surgeon, regardless of the type of robot used.

Results: Twenty-four, 6, and 10 patients with gastric cancer underwent robotic gastrectomy (RG) with hinotori[™], Hugo[™], and SP, respectively. All but one patient underwent distal gastrectomy (DG). No patient had postoperative complications of Clavien–Dindo classification IIIa or higher. No intraoperative adverse events were observed. All patients received R0 resection. The median operative time, console time, blood loss, and the number of dissected lymph nodes in hinotori[™]-RG were 400 min, 305 min, 14.5mL, and 51.5, respectively. The median operative time, console time, blood loss, and the number of dissected lymph nodes in 47 mL, and 57.5, respectively. The median operative time, console time, blood loss, and the number of dissected lymph nodes in 57.5, respectively. The median operative time, and 55, respectively.

Conclusions: This study found that RG with the outermost layer-oriented lymphadenectomy for gastric cancer using hinotori[™], Hugo[™], and SP can be safely performed based on the same concepts for surgical robot setup and dissection technique as we have developed in RG using da Vinci S, Si, and Xi.

Key words: Minimally invasive surgical procedures, Robotic surgical procedure, Stomach neoplasms

Invited Presentation 11 11th May 2024, 14:20-14:45

Prof. Hongsoo Choi

Professor Department of Robotics and Mechatronics Engineering Daegu Gyeongbuk Institute of Science & Technology (DGIST)

Electromagnetic Controllable Micro/Nanorobots to Improve Cell Therapy

Medical micro/nanorobots are tiny robots, often smaller than a millimeter, designed to perform specific tasks in the field of medicine. Integrating electromagnetic systems with medical micro/nanorobots could bring a new era of healthcare characterized by unparalleled precision and innovative control methods. The discussion will cover magnetically actuated untethered micro/nanorobots, highlighting their ability to achieve selective neurite alignment, establish neuronal connections, and perform in vitro/ex vivo/in vivo cell delivery, underscoring their potential applications in translational research. For example, a magnetic iron oxide nanoparticles (SPIONs), demonstrates both morphological and functional neural connections, paving the way for artificial neural networks. The presentation will conclude with a brief introduction to a machine learning approach in a virtual reality environment for the adaptable control of microrobots, offering a novel control methodology. These advancements suggest promising new directions for minimally invasive medical technologies, including enhanced cell therapy, next-generation cancer treatments, and beyond.

List of Posters

Paper Number	Paper Presenters	Paper Title	Poster Number
2	Dr. Sungwoong Jeon (South Korea)	In Vitro Evaluation of a Robotic Interventional System in a Biomimetic 3D Vascular Simulator	P02
3	Dr. Boxian Yao (China)	Accurate Perception of Manipulation Force Makes Vascular Intervention Safer	P03
4	Mr. Zheng Han (Hong Kong SAR)	An Investigation of Organ Deformation Modeling Approaches for Reliable Surgical Navigation in Augmented Reality Surgery	P04
5	Dr. Mengya Xu (China)	Privacy-Preserving Synthetic Continual Semantic Segmentation for Robotic Surgery	P05
6	Dr. Di Wu (Belgium)	A Review on Machine Learning in Flexible Surgical and Interventional Robots: Where We Are and Where We Are Going	P06
7	Mr. Jiawei Fu (China)	Multi-objective Cross-task Learning via Goal- conditioned GPT-based Decision Transformers for Surgical Robot Task Automation	P07
8	Mr. Yonghao Long (Hong Kong SAR)	SurRoL: RL Centered and dVRK Compatible Platform for Surgical Robot Learning	P08
9	Mr. Kejian Shi (Hong Kong SAR)	Haptic-assisted Skill Training in Surgical Robot Simulator via RL-predicted Trajectory and Adaptive Shared Control	P09
10	Mr. Hongbin Lin (China)	World Models for General Surgical Grasping	P10
11	Mr. Yuelin Zhang (Hong Kong SAR)	A Unified Framework for Microscopy Defocus Deblur with Multi-Pyramid Transformer and Contrastive Learning	P11
13	Dr. Di Wu (Belgium)	Comparative Analysis of Interactive Modalities for Intuitive Endovascular Interventions	P12
14	Mr. Jibiao Chen (Hong Kong SAR)	A Cross-Entropy Motion Planning Framework for Hybrid Continuum Robots	P13
15	Mr. Yufu Qiu (Hong Kong SAR)	MR-Safe Robotic Manipulator With Hydraulic Bellows Actuators for Spine Procedures	P14
16	Mr. Yisen Huang (Hong Kong SAR)	Multi-Modal Al-Based Human-Robot Interaction Framework for Surgical Robots	P15
17	Mr. Yehui Li (Hong Kong SAR)	HybridMag: A Force-Torque Magnetic Manipulation System in Human Size	P16
18	Mr. Zhen Zhang (Hong Kong SAR)	Interactive Navigation in Environments with Traversable Obstacles Using Large Language and Vision-Language Models	P17
19	Mr. Hongzhe Sun (China)	A Cylindrical Halbach Array Magnetic Actuation System for Longitudinal Robot Actuation across 2D Workplane	P18
20	Mr. Tao Zhang (Hong Kong SAR)	Inconstant Curvature Kinematics of Parallel Continuum Robot without Static Model	P19

List of Posters

Paper Number	Paper Presenters	Paper Title	Poster Number
21	Mr. Chikit Ng (Hong Kong SAR)	Navigation of Tendon-driven Flexible Robotic Endoscope through Deep Reinforcement Learning in SOFA	P20
22	Mr. Zhiwei Fang (Hong Kong SAR)	Portable Positioning Mechanism Towards Robotic Needle Intervention	P21
23	Mr. Yitian Xian (Hong Kong SAR)	A Semi-autonomous Stereotactic Brain Biopsy Robotic System with Enhanced Safety	P22
24	Mr. Baijia Liang (Hong Kong SAR)	Magnetic-Guided Flexible Origami Robot towards Photodynamic Treatment of H. Pylori Infection	P23
25	Mr. Bonan Sun (Hong Kong SAR)	Magnetic Hydrogel Micromachines with Active Release of Antibacterial Agent for Biofilm Eradication in Medical Catheters	P24
26	Mr. Zhengyang Li (Macao SAR)	Design and Hierarchical Control of a Homocentric Variable-Stiffness Magnetic Catheter for Multiarm Robotic Ultrasound-Assisted Coronary Intervention	P25
27	Mr. Yifeng Hao (Hong Kong SAR)	A Tensegrity Joint with Variable Stiffness for Robot- assisted Ultrasound Scanning	P26
28	Mr. Xiao Luo (Hong Kong SAR)	A Novel Kinematic Calibration Method for Medical Robot Using POE-Based Model and Gaussian Mixture Models	P27
29	Ms. Yingqi Li (Hong Kong SAR)	Learning to Infer Tissue Properties in Ultrasound Imaging	P28
30	Mr. Xiangkai Ouyang (Hong Kong SAR)	Compact Robotic Positioner for MRI-guided Bilateral Stereotactic Neurosurgery	P29
31	Mr. Moqiu Zhang (Hong Kong SAR)	Design and Navigation of Magnetic Microcatheter with Rotatable Tip for Endovascular Treatment	P30
32	Mr. Qinglong Wang (Hong Kong SAR)	Novel Retrievable Nanorobots for Targeted And Enhanced Thrombolysis Potentially Saving Stroke Patients from Brain Damage	P31
33	Mr. Wai Shing Liu (Hong Kong SAR)	An Automated Microrobotic Pathogen Sensing Platform	P32
34	Dr. Jialin Jiang (Hong Kong SAR)	Autonomous Environment-adaptive Microrobot Swarm Navigation Enabled by Deep Learning-based Real-time Distribution Planning	P33
35	Prof. Lin Su (Hong Kong SAR)	Modularized Microrobot for Targeted Cell Delivery in Bile Duct	P34
36	Mr. Lang Chu (China)	Jellyfish-Inspired Hydrogel Microneedle Robots for Precision Medication Delivery within the Gastrointestinal Tract	P35
37	Mr. Hisashi Ishida (United States)	Haptic-Assisted Collaborative Robot Framework for Improved Situational Awareness in Skull Base Surgery	P36
38	Mr. Zhiyi Jiang (Hong Kong SAR)	Super-Resolution of Intravascular Optical Coherence Tomography Images via Compressed Sensing	P37
39	Mr. Jing Dai (Hong Kong SAR)	Learning-based Efficient Phase-Amplitude Modulation and Hybrid Control for MRI-guided Focused Ultrasound Treatment	P38

Endoluminal Al Assisted Surgery Magnetic Guided

Acknowledgement

The Organizing Committee would like to extend their sincere thanks to the following Sponsor for unfailing support and generous contribution towards the success of the Multi-Scale Medical Robotics Center (MRC) Symposium 2024.

Exhibitor

